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Abstract

This study presents an integrated framework for predicting and managing animal disease outbreaks in Korea using artificial intelligence (AI) 
models powered by big data from the Korea Animal Health Integrated System (KAHIS). First introduced during the 2016–2017 highly pathogenic 
avian influenza (HPAI) epidemic, these deep learning-based models estimate transmission risk by analyzing livestock vehicle movement 
patterns. The system produces farm- and municipality-level risk scores to guide targeted interventions for transboundary animal diseases such 
as HPAI, foot-and-mouth disease (FMD), African swine fever (ASF), and lumpy skin disease (LSD). While the models have proven effective in 
early detection and response, they are constrained by limited outbreak samples, outdated datasets, and the exclusion of environmental and 
vector-borne transmission variables. To enhance predictive capacity and disease preparedness, future models should incorporate multivariable 
data inputs and remain adaptable to evolving epidemiological landscapes. 
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INTRODUCTION  

Artificial intelligence (AI) has emerged as a transformative tool 
in epidemiology, offering real-time predictive capabilities for 
infectious disease outbreaks. While traditional mathematical 
models have long been used to simulate disease transmission, 
they often fall short in processing large-scale, rapidly evolving 
data (Yilmaz-Cagirgan and Cagirgan, 2020). AI overcomes 
these limitations by identifying complex patterns within big 
data, enabling more flexible and accurate risk prediction 
(Bajwa et al., 2021).
In response to repeated outbreaks of highly pathogenic avian 
influenza (HPAI), foot-and-mouth disease (FMD), and African 
swine fever (ASF), Korea incorporated AI algorithms into its 
national disease control strategy. The Korea Animal Health 
Integrated System (KAHIS), launched in 2014, provided the 
infrastructure for developing AI-based risk models, which 
were first applied during the 2016–2017 HPAI epidemic (Kim 
et al., 2018; APQA, 2024a).
This study reviews the structure, application, and performance 
of AI-based risk prediction models implemented in Korea 
from 2016 to 2024. It further evaluates their effectiveness 

across multiple transboundary animal diseases—including 
HPAI, FMD, ASF, and lumpy skin disease (LSD)—and outlines 
future directions for improving adaptability, precision, and 
field utility.

MATERIALS AND METHODS

Korea Animal Health Integrated System (KAHIS) 
The Korea Animal Health Integrated System (KAHIS) is a 
centralized web-based platform that supports nationwide 
disease control by integrating real-time data on livestock 
farms, facilities, vehicles, diagnostic results, and biosecurity 
measures (APQA, 2024a). Operated by the Animal and 
Plant Quarantine Agency (APQA), the national animal 
health authorities, the system is accessible via both internal 
government networks and the internet. KAHIS maintains 
structured records on various facility types—including farms, 
feed factories, slaughterhouses, manure treatment plants, 
hatcheries, and egg packing plants. It also monitors livestock 
vehicle movements using GPS data and a geographic 
information system (GIS). Vehicles are classified into 24 
types based on transport purpose, such as animals, feed, 
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manure, raw milk, eggs, or personnel. These data streams 
form the basis for epidemiological tracing and AI-driven risk 
assessment (Yoon et al., 2021a).

Big Data Platform and Analytical Pipeline
The AI-based risk analysis model is integrated into KAHIS and 
operates on an external big data platform (NDAP®, ktNexR, 
2015). This platform uses the Hadoop Distributed File System 
(HDFS) for parallel storage of high-volume datasets and 
Apache Hive for distributed querying. A combination of ETL 
(Extract, Transform, Load) tools and Python-based pipelines 
preprocess the raw data into structured analytical datamarts. 
Final analysis results are stored in Tibero® (TmaxTibero, 2015), 
a relational database management system. Visualizations 
and reports are automatically generated through the KAHIS 
interface and made accessible via the “Decision Support” 
menu for authorized users (APQA, 2022). Robotic Process 
Automation (RPA) has been deployed since 2022 to streamline 
repetitive reporting tasks.

Deep Learning Risk Prediction Model
Model Framework and Assumptions
The model is designed to predict the likelihood of 
disease transmission between livestock farms based 
on epidemiological vehicle movements. It assumes that 
transmission risk is influenced by multiple factors, including:

• Livestock species and production type (e.g., breeder, 
broiler, layer, chicken, duck),

• Farm size (i.e., herd/flock size),
• Frequency, recency, and temporal order of vehicle visits,
• Time intervals between visits to infected and 

subsequently visited farms,
• Vehicle type (e.g., manure, feed, personnel).

Risk is primarily modulated by the spatiotemporal 
characteristics of vehicle movement. Specifically, the model 
tracks vehicles that have visited outbreak farms within a 
disease-specific tracing window, as stipulated in the Standard 
Operating Procedure (SOP) for each disease. For example, the 
tracing period is defined as 21 days for HPAI and ASF, 14 days 
for FMD, and 28 days for LSD.
Each vehicle visit to a non-infected farm is assigned a risk 
score based on the above factors. The model then calculates 
a cumulative farm-level exposure score by summing the 
time-weighted risk contributions of all relevant vehicle visits 
as follows:

 

Where,
• Exposurej: Total exposure score for farm jj, representing 

its cumulative risk of infection.
• Nj: Number of relevant vehicle visits to farm j by vehicles 

that previously visited outbreak farms within the 
applicable SOP-defined tracing window.

• Rij: Risk weight for the i-th visit to farm j, incorporating 
vehicle type, farm type, and farm size.

• Δtij: Time interval (in days) between the vehicle’s visit to 
the outbreak farm and its visit to farm j.

• λ: Decay rate parameter representing reduction in 
transmission probability over time.

• e-λΔtij : Temporal decay function modeling virus survivability 
on fomites such as vehicle surfaces.

This modeling framework allows for quantifying indirect farm-
to-farm transmission potential and supports the prioritization 
of high-risk farms for targeted disease control interventions 
(Yoon et al., 2020).

Data Processing and Model Training
Raw KAHIS data are processed through ETL routines and 
transformed into modeling-ready datamarts. Records 
are cleaned, deduplicated, and normalized. Time-series 
features such as visit frequency, interval lag, and cumulative 
exposure count are engineered from vehicle movement 
logs. Meteorological and environmental variables were 
excluded due to a lack of validated correlation at the time of 
development.
The predictive model is a supervised binary classifier 
implemented using a multi-layer perceptron (MLP) artificial 
neural network. The input layer accepts engineered features, 
which are fed into three hidden layers with 10 nodes each 
and hyperbolic tangent (tanh) activation functions. The 
output node produces a probability value (between 0 and 
1), representing the predicted risk of disease occurrence at 
a farm. Model training uses mini-batch stochastic gradient 
descent with backpropagation to minimize the sum of 
squared errors. A dropout rate of 0.5 is applied during training 
to mitigate overfitting. Hyperparameters were tuned using 
stratified cross-validation, and model selection was based on 
the highest F1-score on the validation set.

Output and Reporting Structure
The final risk score is a continuous value from 0 to 1 and is 
classified into four levels:
+ [0-0.2), ++ [0.2-0.5), +++ [0.5-0.8), ++++ [0.8, 1.0), where [] 
includes the boundary and () excludes it.
Results are exported as Excel files with four sheets:

• Sheet 1: Municipality-level summary of high-risk farm 
counts

• Sheet 2: Farm-level list with exposure scores
• Sheet 3: Vehicle metadata (type, ID, route history)
• Sheet 4: Network map of outbreak-to-farm transmission

These outputs support targeted disinfection, surveillance, 
and communication by regional authorities.
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Vehicle Tracking and Epidemiological Relationships
Vehicle visit events are registered when GPS signals remain 
within the predefined geofenced boundaries of livestock 
facilities for more than two minutes. Since 2021, the geofencing 
system has been enhanced by introducing an inner geofence 
to more accurately determine whether a vehicle has entered 
the premises (i.e., crossed the fence or gate), rather than 
merely stopping at or near the entrance. This improvement in 
spatial resolution enables the model to distinguish between 
actual entries and pass-by events, thereby enhancing the 
accuracy of epidemiological linkage (Son et al., 2022).

RESULTS

HPAI Risk Prediction Model
Risk Assessment for Outbreaks in Poultry Farms
Korea’s first AI-based risk prediction model for HPAI was 
developed in early 2016 using outbreak data from January 
to November 2015 and launched as a pilot in the first half 
of that year. In 2017, it was enhanced with a larger dataset 
of 804 outbreak farms from 2014 to 2017 (Kim et al., 2018). 
The model analyzed 9,094 livestock vehicle visits to outbreak 
farms within 21 days prior to disease onset, resulting in 90,264 
secondary visits to other facilities. Notably, 96.6% (87,173 
visits) were to poultry farms, highlighting the importance of 
vehicle movement in HPAI transmission. To reflect seasonal 
patterns, data were stratified into four periods: early 2014, 
and the winters of 2014/15, 2015/16, and 2016/17. Training, 
validation, and test sets were drawn accordingly to capture 
time-dependent transmission dynamics.
The final model was a multi-layer perceptron (MLP) with three 
hidden layers of 10 nodes each, using a hyperbolic tangent 
activation function and 0.5 dropout. It trained for 140,000 
epochs, converging near 40,000. On a test set of 34,733 
records, it achieved a recall of 0.90, precision of 0.54, and F1-
score of 0.65, correctly identifying 3,030 of 3,361 outbreak-
related cases, with 2,867 false positives. Validation showed 
significantly higher predicted risk scores for outbreak farms 
(mean 0.20 ± 0.31) than non-outbreak farms (0.18 ± 0.30, P < 
0.001). In the 2017/18 winter, the model also predicted higher 
risk for outbreak farms (0.25 ± 0.17 vs. 0.17 ± 0.29), though 
the difference was not statistically significant (P = 0.21) (Yoon 
et al., 2020).
High-risk scores were typically linked to vehicles visiting 
outbreak farms shortly before other poultry farms, and 
to farms with frequent vehicle traffic. Early risk signals 
were associated with vehicles used for culling and manure 
transport. As more data accumulated, the model increasingly 
reflected risks related to epidemiological links between 
farms of the same integrator, similar production types, and 
confirmed direct vehicle entries (Yoon et al., 2020; Yoon et al., 
2022; APQA, 2024c).

Risk Assessment for Detection of H5/H7 Avian Influenza 
Viruses in Wild Birds
When H5 or H7 avian influenza viruses (AIVs), which are 
known for their potential high pathogenicity, are detected 
in wild birds (e.g., feces, captured birds, carcasses), livestock 
vehicle movement data within a 3 km radius of the detection 
point is retrieved from KAHIS. The data covers vehicle 
movements from one day before the sampling date to the 
analysis date, accounting for the possible delay between 
viral contamination and the discovery of infected feces or 
carcasses in the environment (Yoon et al., 2021b). The visit 
history of these vehicles to poultry farms is traced to assess 
potential risk.
A Python-based program was developed to calculate the 
risk for each poultry farm visited by these vehicles, as well 
as for the municipalities where the farms are located. The 
model classifies farms, vehicles, and migratory bird habitats 
into six infection stages based on their contamination status 
with AIV at time t. Infection dynamics are simulated using an 
individual-based stochastic model, repeated 3,000 times per 
scenario and replicated 50 times. The number of times each 
farm is predicted to be infected is summarized into a statistical 
distribution, which is modeled using a Gaussian mixture 
model. Farm-level risk is categorized into four tiers: ++++, +++, 
++, and + (APQA, 2019). These values are aggregated at the 
municipal level, and K-means clustering is applied to classify 
municipalities into four risk levels: ++++, +++, ++, and + (Yoon 
et al., 2021a; Yoon et al., 2021b). The final output includes a 
choropleth map showing municipality-level risk, along with 
statistics on the number and types of vehicles and the number 
of poultry farms visited in each area. Since January 2022, this 
entire process—from data extraction to report generation—
has been automated using robotic process automation (RPA), 
reducing the processing time from over 3 hours to under 15 
minutes (Yoon et al., 2022; Cho, 2022).
Epidemiological analysis showed that approximately 80% of 
related vehicle movements involved livestock transport, feed 
delivery, and consulting services. When AIVs were detected 
in the capital region, related farms were widely dispersed 
nationwide, primarily due to the movement of these vehicles. 
The highest predicted risks were consistently observed in the 
detection areas and adjacent municipalities (Son et al., 2022).

FMD Risk Prediction Model
The risk prediction model for FMD in cloven-hoofed animal 
farms was developed using the same algorithmic framework 
as the HPAI model for poultry farms. The initial model was 
trained in 2016 using data from 180 pig farms and five 
cattle farms with confirmed FMD cases between December 
2014 and April 2015. However, due to the limited number 
of cattle cases in the training dataset, the model’s predictive 
performance for cattle farms was suboptimal. To improve 
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accuracy, the model was retrained using additional data from 
nine outbreaks that occurred during the 2017 epidemic. A 
total of 1,698 livestock vehicle visits to outbreak farms within 
14 days prior to the onset of outbreaks were analyzed. These 
visits resulted in 53,011 subsequent movements to livestock 
facilities, of which 50,045 (94.4%) were to farms raising cloven-
hoofed animals.
The final model architecture consisted of three hidden layers 
using sigmoid activation functions and no dropout. It was 
trained over 700 epochs, with the loss function stabilizing 
after approximately 300 epochs. In a test dataset comprising 
15,951 samples, the model correctly identified 124 true 
positives out of 133 actual cases, yielding a high recall of 
0.93. However, the model also produced 771 false positives, 
resulting in a precision of 0.14 and an F1-score of 0.24 (Internal 
report, unpublished). 
The model’s predictive performance varied by species. For 
swine farms, high-risk predictions were frequently associated 
with visits by vehicles transporting livestock manure. In 
contrast, for cattle farms, visits by feed transport vehicles 
were more commonly linked to elevated risk (APQA, 2024d).

ASF Risk Prediction Model
Risk Assessment for ASF Outbreaks on Swine Farms
At the time of the AI-based model’s development in 2017, no 
outbreak data on ASF was available, as the first confirmed 
case in South Korea occurred in 2019 (MAFRA, 2024a). As a 
result, the model was not initially designed to predict ASF 
outbreaks. Instead, it was adapted by calibrating the existing 
FMD risk prediction model to focus specifically on swine farms 
and vehicle movements related to swine operations.
Since the initial outbreak in 2019, the calibrated model has 
been utilized to assess the risk of epidemiologically linked 
swine farms. High-risk predictions are typically associated 
with farms visited by a variety of epidemiological vehicles, 
including those used for feed transport, animal transport, 
manure transport, veterinary pharmaceuticals, veterinary 
services, consultancy, and artificial insemination semen 
delivery (APQA, 2024b).

Epidemiological Analysis for ASF Virus Detection in Wild 
Boars
Upon detection of ASF virus in wild boars, livestock vehicle 
movements within a 3 km radius of the detection site are 
examined, reflecting the possible movement range of the 
infected wild boars before detection. For carcasses, vehicles 
are traced from the estimated date of death to the analysis 
date; for hunted or captured wild boars, tracking begins from 
the date of capture. After identifying the relevant vehicles, 
their visit histories to pig farms are comprehensively analyzed.
Unlike farm outbreaks, farm- or municipality-level risk 
categories are not publicly disclosed for ASF detections in 

wild boars. Instead, municipalities are classified based on 
the number of epidemiologically linked pig farms within their 
boundaries. A detailed epidemiological report is generated, 
including information on the detection location, vehicle 
movements, and related farms. As with AIV detections in 
wild birds, this report is produced using robotic process 
automation (RPA) (Cho, 2022).
Feed transport vehicles account for the majority of 
epidemiological vehicle movements linked to wild boar 
detections, followed by animal transport and consultant 
vehicles. During the initial ASF outbreaks in 2019–2020 in 
northern Gyeonggi-do and Gangwon-do, related farms were 
primarily concentrated near detection areas due to strict 
movement controls. However, as the outbreak progressed, 
epidemiologically related farms became more geographically 
dispersed nationwide. This expansion was largely attributed 
to the limited movement restrictions imposed on most 
livestock vehicles—except manure transport vehicles—which 
were subject to strict monitoring within designated control 
zones (MAFRA, 2024b).

Epidemiological Analysis for LSD Outbreaks on Cattle 
Farms
Unlike FMD, HPAI, or ASF, LSD is primarily transmitted by 
blood-sucking insects acting as biological vectors, rather than 
through mechanical transmission via contaminated vehicles. 
It is hypothesized that such insects may attach to vehicles, 
enabling indirect transmission between farms rather than 
direct vehicular spread (Bianchini et al., 2023).
Considering this unique transmission pathway, vehicles that 
passed within a 3 km radius of an outbreak farm (outbreak 
area) from 28 days before the outbreak to the outbreak date 
are identified. Their subsequent visits to cattle farms are then 
traced. Although the existing FMD risk model is applied to LSD 
outbreaks for analytical purposes, no farm- or municipality-
level risk scores are generated. Instead, epidemiological 
information linking outbreak areas, vehicle movements, and 
related farms is disclosed.
During the 2023 LSD epidemic, vehicles passing near 107 
outbreak farms and subsequently visiting other cattle farms 
were predominantly animal transport vehicles (31.8%), 
followed by feed transport vehicles (23.3%) and consultant 
vehicles (9.8%). These vehicles accessed cattle farms across 
159 municipalities (epidemiological areas), including 34 with 
confirmed outbreaks. In municipalities with outbreak farms, 
animal transport vehicles accounted for 30.9% of movements, 
followed by feed transport (25.3%) and consultant vehicles 
(12.5%). In contrast, in municipalities without outbreaks, feed 
transport vehicles were most prevalent (39.5%), followed by 
animal transport (18.3%) and consultant vehicles (9.1%).
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Risk Information by Disease
Table 1 summarizes key risk assessment parameters for each disease, including the geographic radius used to identify passing 
vehicles, the timeframe for vehicle data extraction and tracking, the year in which risk assessments began, and the total 
number of services delivered (as of 27 December 2024).
Publicly accessible risk categories for farms and municipalities are available on the official website of the Animal and Plant 
Quarantine Agency (APQA) for HPAI (APQA, 2024c), FMD (APQA, 2024d), and ASF (APQA, 2024b).

Table 1. AI-Based Risk Analysis for HPAI, ASF, FMD, and LSD in Livestock Farms in Korea.

Disease HPAI ASF FMD LSD
Items Farm Wild bird Farm Wild boar
Geographic scope for identifying 
passing vehicles

Farm 3km-radius Farm 3km-radius Farm 3km-radius

Timeframe for vehicle extraction 
and tracking (before the outbreak 
date)

21 days 2 days 21 days Estimated date of death
(for carcasses) or date of 
capture (for live boars)

21 days 28 days

Starting year for providing risk 2016 2019 2019 2020 2017 2023

Yearly service delivery totals 
(as of 27 December 2024)

 2016 419 - - - - -

 2017 18 57 - - - -

 2018 22 64 - - 2(+ NSP 1) -

 2019 - 32 14 33 4(+ NSP 2) -

 2020 109 407 2 1,211 NSP 3 -

 2021 47 147 5 964 - -

 2022 90 326 7 965 - -

 2023 42 126 10 936 11 107

 2024 20 130 11 934 - 24
Note: NSP = Non-Structural Protein
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DISCUSSION

AI-based risk analysis for livestock farms has become an 
essential tool for animal health management in Korea. The 
model has demonstrated its value by accurately identifying 
high-risk farms, enabling targeted preventive measures and 
reducing the impact of animal diseases. However, limitations 
in data availability for certain diseases and the constraints of 
the current model highlight the urgent need to improve its 
predictive capabilities. Looking ahead, it is critical to prepare 
for potential outbreaks of emerging diseases. Lessons 
learned from ASF and LSD outbreaks emphasize the need 
for a flexible and scalable prediction model that can adapt 
to new diseases, even when initial data is limited. Enhancing 
the AI-based prediction system will not only improve disease 
prevention and response but also strengthen the resilience 
and sustainability of Korea’s livestock industry. In contrast, 
evaluation of the FMD model was limited by a small number 
of outbreaks—only nine in 2017 and two in 2018—restricting 
robust statistical validation. Nevertheless, both the HPAI and 
FMD models benefited from proper parameter tuning and 
model selection based on the highest F1-scores, partially 

addressing concerns regarding overfitting, which are common 
in machine learning applications (Slob et al., 2021).
At the time of model development in 2017, disease 
transmission in Korea was primarily attributed to farm-to-farm 
spread, especially via livestock vehicles (APQA, 2015; APQA, 
2016; Yoon et al., 2015; Lee et al., 2021). In response, Korean 
authorities enforced strict biosecurity regulations, requiring 
livestock vehicles to undergo multi-stage disinfection, 
including mandatory stops at designated disinfection 
facilities and on-farm sanitation using high-pressure spraying 
equipment (MAFRA, 2023; 2024c–e). However, more recent 
outbreaks of HPAI and ASF suggest a shift in transmission 
patterns. Environmental sources and indirect routes—such as 
contaminated equipment or human-mediated spread—are 
now considered more prominent than direct vehicle-borne 
pathways (APQA, 2023; APQA, 2024e). These findings highlight 
the need to expand the current model’s scope beyond vehicle 
movement. Incorporating environmental variables, human 
traffic, and biosecurity compliance metrics would allow for 
multivariable risk modeling that more accurately reflects 
present-day transmission dynamics (Rees et al., 2021; Han et 
al., 2022; Min and Yoo, 2023).
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Another major limitation is the lack of model updates since 
2017. Although the ASF model was first applied in 2019, 
it remains based on the epidemiological assumptions of 
earlier diseases and does not reflect significant shifts in ASF 
transmission patterns observed since 2020 (Yoo et al., 2021; 
APQA, 2022–2024). Similarly, the model for LSD does not 
currently generate risk scores; it only provides epidemiological 
tracing outputs. These gaps reinforce the need for dynamic, 
disease-specific models that are regularly updated and 
capable of rapid adaptation to emerging pathogens. 
Despite these limitations, field-level feedback supports the 
model’s practical value. A nationwide survey conducted in 
June 2024 showed that 100% of the 46 respondents—animal 
health officials across 218 jurisdictions—found the AI-based 
risk assessments helpful for disease control. The reports were 
used to inform administrative units and farmers, enabling 
preventive actions such as vehicle disinfection, serological 
testing, and clinical surveillance tailored to regional conditions 
(Internal report, http://www.open.go.kr).

CONCLUSION

AI-based risk prediction models have played a critical role in 
Korea’s efforts to manage transboundary animal diseases, 
particularly by enabling early warnings and targeted 
interventions. However, the current systems face clear 
limitations, including outdated data, an overemphasis on 
vehicle-based transmission, and insufficient flexibility to 
adapt to new or evolving disease patterns. To remain effective, 
future models must integrate diverse data sources—such 
as environmental and meteorological factors—and support 
continuous updates tailored to each disease. Building such 
flexible and scalable AI systems will be essential not only for 
enhancing outbreak preparedness and response, but also 
for strengthening Korea’s long-term livestock biosecurity and 
sustainability.

Data Availability
The internal report referenced in this study is available upon 
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for HPAI, ASF, and FMD outbreaks on livestock farms are 
publicly accessible on the APQA website (https://www.qia.
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