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ABSTRACT

The great success of AlphaFold programs poses the 
questions: (i) What is the main reason for this success? (ii) 
What AlphaFolds does: physics-based prediction of the 
spatial structure of a protein from its amino acid sequence 
or recognition of this structure from similarity of the target 
sequence to some parts of sequences with already known 
spatial structures? The answers given here are: (i) the 
main reason for the AlphaFold’s success is the usage of 
huge databases which already cover virtually all protein 
superfamilies existing in Nature; (ii) using these databases, 
multiple sequence alignments, and coevolutionary 
information – like correlations of amino acid residues of the 
contacting chain regions – AlphaFold recognizes a spatial 
structure by similarity of the target sequence (or its parts) to 
related sequence(s) with already known  spatial structures. 
We emphasize that this does not diminish the merit and 
utility of AlphaFold but only explains the basis of its success.
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INTRODUCTION 

The great success of the AlphaFold, AlphaFold2 and then 
OpenFold programs [1 3] in identifying three-dimensional 
(3D) protein structures from their amino acid (a.a.) sequences 
is obvious [4], but it raises two questions [5]: What is the main 
reason for this success? What exactly does AlphaFold do: 
prediction of the 3D protein structure from its a.a. sequence 
and the protein chain physics or recognition of this structure 
from the similarity between the target sequence and some of 
sequences with already known 3D structures? 
According to bioinformatics [6 10], 20 25% or higher identity of 
a.a. sequences is usually sufficient to ensure a close similarity 
of 3D protein folds with a small, <2Å, average difference 
between their coordinates. More specifically [7, 8], the residue 
identity below 20% in pairwise sequence alignments often 
does not provide reliable alignments of 3D structures; the 
identity of 20-25% is the “twilight” zone [7]; and only an identity 
of >25% ensures correct alignments of 3D structures. Here we 
show that the sequence similarity between the domain-, half-
domain- and 1/3-domain-size fragments of a random protein 
sequence and the like ones from modern databases exceeds 
this threshold.

METHODS

Derivation of the expected sequence identity. 
According to the Poisson distribution, the probability that 
the random a.a. sequence   matches another random a.a. 
sequence of the same length   in   positions is 
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when each type of a.a. falls out with probability  p .
If the random sequence   is compared not with one but with   
random sequences of the same length n  (forming the set 
ΣN ), Pm,pn N is the expected number of the set ΣN  members 
matching Sn  in m  positions. Thus, the equation Pm,pn N= 1  
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determines the maximal expected number M  of matches of 
the sequence Sn  with the closest in similarity sequence from 
the set ΣN . 
Assuming p<< 1   ,   long   enough   sequences   (1 << pn ),   and   
significant   sequence   identity (1 << pn << m ), one can use the 
Stirling’s approximation (m! ≈ (m/e)m , where e ≈2.72 ) and get 
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The maximal expected value of m/n  (denoted as M/n ) follows 
from the equation 1/PM.pn  , 
or 
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A “novel fold” coverage with parts of known protein 
structures. 
Here, we considered the smallest “novel fold” from the CASP 
14 experiment [12], the 102-residue long target T1035 (PDB 
code: 6VR4, chain A, a domain of a.a. residues 235-336). To 
preserve the protein secondary structure, we chose splitting 
points in the T1035 loops between the secondary structure 
elements. As a result, we split T1035 into three parts: a central 
part of 50 residues, a C-terminal part of 43 residues, and an 
N-terminal part of 9 residues, see Figure 2. We ran the TM 
align program [13] separately for each of these parts of T1035 
against all PDB structures published by the May 2020 (because 
AlphaFold2 did not “see” any PDB structure published after 
this date [2] during its training).

RESULTS

The expected similarity of a target sequence with the 
closest in identity chain from protein banks.
First, we estimated the expected maximal similarity of a 
continuous random sequence S_n of n a.a. residues (where 
each a.a. type falls out with probability p) with the closest in 
identity chain from a set Σ_N of N other continuous random 
sequences of the same size and a.a. content. This estimate is 
given by Eq. 3 in Methods.
We found that for p≈1/20, typical of proteins with 20 a.a. types, 
n≈100, typical of protein domain size, and N≈1.5×10^5, the 
number of protein structures in the Protein Data Bank (PDB) 
in 2020 (https://www.rcsb.org/stats/growth/growth-protein), 

the expected maximal fraction M/n of identical residues in the 
target sequence and the closest in similarity chain from the 
sequence set Σ_N is 0.19. For p≈1/20, n≈100, and N≈1.9×10^8, 
the number of protein sequences in the sequence database 
UniProtKB (https://academic.oup.com/nar/article/49/D1/
D480/6006196) in 2020, M/n≈0.24. The sequence identity of 
19-24% (Fig. 1, blue bar) is already sufficient to usually result 
in a small, 1.7 ± 0.5 Å [6], root mean square difference (RMSD) 
between coordinates of compared proteins.
For a “half-domain” size (≈ 50-residue) random chain with 
p≈1/20, and N≈1.5×10^5-1.9×10^8, M/n rises from 19-24% 
to 27-35%. This provides an RMSD of 1.4 ± 0.2 Å between 
coordinates of such compared protein fragments. For a 
1/3-domain chain, the RMSD can be expected to be 1.3 ± 0.2Å.
However, the actual level of identity between the randomly 
taken protein sequence and its closest database analogue is 
higher than 19 24% because the above comparison ignored 
possible insertions or deletions. The structural alignment of 
related protein sequences of n≈100 residues usually requires 
2 4 insertions or deletions of 1 20 residues each [8, 11]. These 
insertions/deletions, together with possible shifts of our 
100-residue sequence relatively to the database-stored one, 
increase the number N of independent sequence comparisons 
by ≈ 4 8 orders of magnitude. Thus, the best expected (by Eq. 
3) identity between a ≈ 100-residue random sequence and 
its closest database analogue rises from 19 24% to a more 
realistic M/n≈25-32% (Fig. 1, yellow bar).

Figure 1

Figure 1. Structural divergence of homologous proteins plotted 

against the sequence identity (different black symbols referring to 

different protein families; adapted from [4]). Colored bars show the 

expected ranges of the residue identity of a “domain-size” (n≈100) 
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random sequence to the closest in similarity sequence from UniProtKB 

and PDB databases of different years. The structural difference is 

measured by the root mean square deviations (Å) of the main-chain Cά 

positions for residues of the optimally superimposed “protein cores” 

(comprising the main secondary structures and covering >90% of the 

chains with a <50% residue identity, and ≈ 50% of the chains with a ≈ 

20% residue identity) [4]. The sequence similarity is measured in the 

percentage of residues that are identical in the superimposed cores.

The above estimates do not take into account the fact that 
some proteins have many more homologues than others. 
The existence of multiple homologues reduces the number 
of “independent” comparisons. However, even if this number 
is reduced tenfold, the ranges of 19 24% and 25 32% change 
only slightly, to 18 23% and 24 31%, respectively. For a “half-
domain” (50-residue) random chain, M/n rises from 27 35% 
to more realistic 36 44%, which ensures an RMSD of 1.2 ± 0.2 
Å between coordinates of superimposed protein fragments. 
For a 1/3 domain chain, the RMSD can be expected to be 1.1 
± 0.2 Å. As Eq. 3 shows, with given number N of independent 
sequence comparisons, the expected M/n value decreases 
with the increasing chain length n. However, one part of 
a target protein chain can match some part of one known 
protein, while its another part can match some part of another 
known protein. AlphaFold is able to dock [1] such separate 
known parts, and the result of this docking may form a “novel 
fold” that has not yet been found among known proteins.

A “novel fold” coverage with large parts of known protein 
structures. 
To demonstrate that a “novel fold” can be presented as a 
combination of parts of known structures, we show this for 
the target T1035 from the CASP 14 experiment [12], where 
T1035 was the smallest “novel fold”. We split T1035 into a few 
parts and ran TM-align program [13] against all PDB structures 
known in the training phase of AlphaFold (see Methods). 
Figure 2 features the T1035 structure as a combination of 
three fragments with RMSD of about 0.4 2.0 Å for each of 
them. It should be noted that, in fact, the TM align program 
gave a lot of nearly equally good options for covering the 
T1035 “novel fold” with parts of known protein structures that 
have almost the same RMSD; and we have presented only 
one of them in Figure 2.

Figure 2

Figure 2. A “novel fold” (target T1035 from CASP 14) as a combination 

of fragments of already known structures. Superposition of this 

“novel fold”, shown in gray (PDB code: 6VR4, chain A, residues 235 (N 

terminus) - 336 (C terminus)) and fragments of three structures which 

were available to AlphaFold during the training. A fragment shown in 

blue, which comprises residues 198 211 of a protein with PDB code 

1GB3, chain A, is superimposed on the N terminal part of T1035; the 

fragments shown in in red, which comprise residues 52 68 and 74 

96 of a protein with PDB code 5A29, chain A, are superimposed on 

the central part of T1035; and the fragments shown in green, which 

comprise residues 157 171 and 458 482 of a protein with PDB code: 

5W40, chain B, are superimposed on the C terminal part of T1035.

DISCUSSION

With huge databases currently available, a “new” sequence 
whose 3D structure is to be identified typically either has  
≈ 25 32% identity to some protein whose 3D structure (or 
that of its homolog) is already known or can be divided into 
a few domain-size or approximately half-domain-size parts 
that have ≈ 25 44% sequence identity to some parts of known 
protein structures and can be subjected to docking. The above 
sequence identities correspond to proteins whose structural 
divergence is about 1.4 ± 0.4 Å (Fig. 1).
It should be noted that although the assumption that similar 
sequences have similar folds [6, 10] is practically 100% correct 
for natural proteins, some specially designed proteins show 
that mutation of only one special a.a. residue can drastically 
change their structure and function [14]; the sequence-based 
recognition of structure can be problematic in such a case.
It is also worth noting that AlphaFold contains ~21×10^6 
adjustable parameters ([2], and J. Jumper, private 
communication) - 1000 times more than the number of 
parameters needed to describe the physics of protein 
chains, including all the pairwise, triple, and even quadruple 
[15] interactions of all their atoms. This 1000 fold excess 

Research Article

3www.directivepublications.org

https://www.directivepublications.org/


The Journal of Molecular Biology (ISSN 2995-8601) 

shows the ratio between the AlphaFolds’ similarity-based 
(bioinformatics) and physics-based efforts.
The above 21×10^6 adjustable parameters “trained” on 
protein databases form the “own”, that is, the internal memory 
of AlphaFold. In addition, AlphaFold can use external memory 
contained in protein databases, i.e., in PDB (now containing 
hundreds of thousands of proteins with about hundred 
of millions of amino acid residues with billions of atomic 
coordinates) and UniProtKB (now containing hundreds of 
millions of sequences with about hundred of billions of amino 
acid residues). AlphaFold can work without this external 
memory, but the predictions of protein structures made using 
the external memory are better and more confident [16].
It is widely debated how well AlphaFold has learned the 
physics of proteins. Yes, AlphaFold knows the stability of 
protein structure elements, since it knows the statistics of 
PDB-stored protein structures, which is directly related to 
their stability [10, 17] due to evolutionary preservation of 
their stable features; but it (yet?) knows nothing about the 
process of protein folding. Besides, Figure 5b of [2] clearly 
demonstrates that bioinformatics is much more important 
than physics for AlphaFold predictions. This Figure shows 
a correct but contradicting to physics prediction of a non-
compact structure of some protein chain. This non-compact 
structure lacks interactions that can support it – it is fixed 
by surrounding protein chains not introduced to AlphaFold. 
However, knowledge of similar complexes is sufficient to 
AlphaFold to make correct bioinformatics recognition, though 
contradicting to physics of this separate target chain. The 
same is demonstrated by Figure 3.

Figure 3

Figure 3. (A) Structure of a 13 residue fragment of the “collagen-

like” sequence (Gly-Pro-Pro)13 predicted by AlphaFold program [2, 

19]. This chain is not supported by any “extraneous” interactions, and 

thus has to have no definite structure, because it is much longer than 

a persistent length of a polypeptide chain (especially since it contains 

a lot of glycines, and this is the most flexible amino acid residue 

[10]). Nevertheless, its conformation is just the same as in collagen. 

(B) The same chain fragment (colored) in the context of triple helix 

of collagen, PDB: 5CTD [20], where this chain is supported by the 

remaining (shown in light-gray) two chains of the collagen triple helix.

Now we can answer the questions posed at the beginning of 
this paper. The main reason for the tremendous success of 
AlphaFolds is, apart from great programming, the usage of 
huge protein databases which, as Cyrus Chothia predicted 30 
years ago [21], now seem to cover all or almost all protein 
superfamilies. Using these databases, multiple sequence 
alignments, and the resulting coevolutionary information like 
correlations in contacting pairs, triplets, etc. of a.a. residues, 
and evolutionary conservation of their stable features, 
Open- and AlphaFolds outline the sought-for 3D structure by 
similarity of the target to related sequence(s) with known 3D 
structure(s). It is worth noting that AlphaFold, if trained on 
databases-1994 (the year of the first CASP - Critical Assessment 
of Protein Structure experiment) would work significantly 
worse than now because databases-1994 were much smaller: 
they contained ≈ 30000 protein sequences [22] and ≈1000 
structures (https://www.rcsb.org/stats/growth/growth-
released-structures). With databases-1994, the highest 
Eq. 3 expected sequence identity for the best continuous 
alignment of a 100-residue chain would be not 19 24% as it 
is now, but only 15 19% (Fig. 1, dark gray bar). This is below 
the “twilight zone” where sequence- and structure alignments 
are often different. As for the alignments with insertions and 
deletions, in 1994 we would have a “twilight” recognition 
with an expected sequence identity of 19 26% (instead of 
the present 25 32%). And it goes without saying that in 1974, 
when the first international assessments of protein structure 
prediction [23] started and only ~10 of protein structures and 
~1000 sequences were known, AlphaFolds would not be able 
to determine protein structures from a.a. sequences (Fig. 1, 
light gray bar).

CONCLUSIONS

In this article, our attention is paid not to the operation of 
AlphaFold programs, which is well described in [1 4] and some 
other articles. Our attention has been paid to AlphaFold’s 
source of wisdom. We see that the basis of AlphaFold’s 
great success is a skillful usage of huge protein databases 
collected during 60 years and clearly presenting evolutionary 
conservation of stable features of 3D protein structures. 
Now they give a possibility to predict, or rather recognize 
stable protein structures from their a.a. sequences without 
considering the process of protein folding [10, 24] that 
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creates these structures. We emphasize that the presented 
paper does not diminish the merit and utility of AlphaFolds; it 
only explains the basis of their success.
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