
Review Article

Cellular fibroblast Progression Component: A 
Prospective Medical Goal.
Xiao Li

Division of Nephrology, Department of Medicine, the University of 
Tennessee Health Science Center, Memphis,TN, 38165, USA.

*Corresponding Author : 
Xiao Li, Division of Nephrology, Department of Medicine, the 
University of Tennessee Health Science Center, Memphis,TN, 
38165, USA.

Received : August 20, 2023 
Accepted: August 23, 2023 
Published : September 23, 2023 

ABSTRACT

It has been discovered that fibroblast growth factor-23 (FGF-23) is 

a pathogenic factor and circulating hormone in a variety of medical 

diseases. Recent developments in FGF-23 as a therapeutic target are 

reviewed in this study, including FGF-23 antagonist, FGF-23 antibody, 

FGF-23 C-terminal peptide, CYP24A1 inhibitor, and fibroblast growth 

factor receptors (FGFR) tyrosine kinase inhibitor. We also provide an 

update on the benefits and drawbacks of focusing on downstream and 

upstream molecules in FGF-23 signalling pathways.

INTRODUCTION
 
A hormone generated from bone, fibroblast growth factor-23 (FGF-
23) prevents the kidney from producing 1,25-dihydroxyvitamin 
D3 (1,25(OH)2D) and reabsorbing phosphate1,2 (Figure 1). 
Through the bone-kidney axis, FGF-23 physiologically controls 
vitamin D metabolism and systemic phosphate balance.3,4 
Excess FGF-23, however, causes hyperphosphatemic rickets in 
hereditary diseases and may also be harmful in the course of 
chronic kidney disease.5-7 X-linked hypophosphatemic rickets 
(XLH)/Hyp mice, which is caused by inactivating mutations of 
Phex; autosomal recessive hypophosphatemic rickets 1 (ARHR1), 
which is caused by inactivating mutations of Dmp1,15,20 ARHR2, 
which is caused by inactivating mutations in ENPP1,10,14–17, 

and Raine Syndrome (RNS) are among the rare hereditary 
hypophosphatemic disorders in humans and their mouse 
homologues,8–19. caused by tumor-induced osteomalacia 
(TIO) and FAM20C21,22 inactivation mutations.23–25 Chronic 
kidney disease (CKD) is associated with secondary increases 
of FGF–23.1,26 Chronic elevations of FGF-23 are maladaptive 
and have been related to increased morbidity and mortality,6 
cardiovascular disease,6,28–31, and inflammation32–33 in 
chronic kidney disease (CKD). Initially, elevated FGF-23 is an 
adaptive response to altered mineral metabolism in CKD27. 
Controlling FGF-23 levels and the signalling pathways that 
lead to and originate from it may therefore be a viable target 
to enhance outcomes in a variety of medical disorders. The 
tyrosine kinase inhibitor (NVP-BGJ398) for fibroblast growth 
factor receptors (FGFR),34,35 CYP24A1 inhibitor,36 FGF-23 
antibody (KRN23),37,38 FGF-23C-terminal peptide,39,40 are 
being developed to treat illnesses caused by excess FGF-23, as 
is FGF-23 antagonist 41. Recent developments in these fields 
will be summed up in this review.

FGFR INHIBITOR KINASE
The pharmacological suppression of FGFRs in excess FGF-23 
is strongly supported by data. First, the important co-receptor 
Klotho works with members of the FGF receptor (FGFRs, 1, 3, 
4) family to transduce FGF-23 signalling. This process gives 
endocrine FGF-23 signals tissue-specificity because of its kidney’s 
major expression (Figure 1).42 Second, FGFR signalling and 
FGF-23 expression are activated in osteocytes17 in hereditary 
hypophosphatemic diseases such XLH/Hyp and ARHR1, and 
osteocyte-specific Fgfr1 deletion in Hyp animals significantly 
reduces FGF-23 production.18 Third, osteoglophonic dysplasia 
(OGD) is caused by a gain-of-function mutation in FGFR1, 
and it is also linked to hypophosphatemia and increased 
FGF-23 levels.43 The development of FGFR inhibitors that 
regulate FGF-23 signalling and production in disorders of 
excess could be beneficial in theory.To treat FGF-23-mediated 
hypophosphatemic disorders, FGFR tyrosine kinase inhibitor 
(NVP-BGJ398) has been created. It has been demonstrated to 
limit FGF-23’s production as well as its effects on end organs.34, 
35 However, NVP-BGJ398 is a tiny drug that lacks selectivity for 
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FGF-23/FGFR/α-KL signalling and has strong inhibitory action 
against FGFRs 1, 3, and 4. As a result, its broad potential to 
block FGFRs across several tissues would be unfavourable.34, 
35 Furthermore, it has been revealed that SSR128129E (SSR), 
a tiny molecule that binds to the extracellular portion of FGFR, 
functions as a FGFR antagonist.44, 45 Since SSR128129E has 
certain drawbacks, including as selectivity and possible toxicity, 
it is currently being explored as an anti-tumor medication. 
There aren’t any little compounds available yet that precisely 
control FGF-23 activation. 
The identification of such molecules would progress the hunt 
for innovative treatments based on this unique bone/kidney 
endocrine network, in addition to offering research instruments 
to clarify FGF-23 biological functions.

FGF-23 Antibody
A FGF-23 specific antibody has been developed as a treatment 
for XLH (Burosumab, KRN23, Ultragenix (USA) and Kirin 
(Japan)).37, 38, and 46 KRN23 attaches to FGF-23 and prevents 
its biological function. But the loss of FGF-23 function can lead to 
major adverse effects, such as calcifications of soft tissues and 
hyperphosphatemia. There are currently no plans to investigate 
KRN23 in CKD because preclinical research in CKD models 
indicates that inhibiting FGF-23 with a high affinity blocking 
antibody increases mortality (38). It is debatable whether to 
lower FGF-23 in CKD because using calcimimetics to reduce PTH 
only slightly lowersand increased longevity in those suffering 
from end-stage kidney disease (ESRD).47 Finding a medication 
to dose-dependently and reversibly lower FGF-23 may improve 
the course of CKD, as an estimated 30 million adults in the 
USA, or 15% of the population, have CKD with increased FGF-
23. A low affinity FGF-23 blocking antibody (KRN23) was chosen 
for clinical development in order to minimise harm. KRN23 is 
effective in improving rickets in XLH patients by elevating serum 
phosphate, according to clinical trials.37, 38 While ~6% of XLH 
patients treated with KRN23 experienced hyperphosphatemia, 
biologics like KRN23 have several drawbacks, including high cost, 
parenteral delivery required, lengthy half-life, and challenges 
with dose titration. From a commercial standpoint, it is possible 
to create a tiny, orally accessible chemical that inhibits FGF-23.

C-TERMINAL PEPTIDES OF FGF-23
A biological endoproteasefur can cleave the 32-kDa full-length 
FGF-23 protein at the 176RXXR179 location, resulting in the 
portions of the 16-kDa C-terminal and 22-kDa N-terminal.

Thirteen According to recent research, FGF-23C’s C-terminal 
tail can rival full-length ligand for binding to the FGFR/α-KL 
complex. As a result, it can counteract FGF-23’s phosphaturic 
activity in vivo in both mice with phosphate deficiency illnesses 
and healthy rats.39, 40 The researchers created a FGF-23C Fc 
fusion molecule to extend the half-life of the FGF-23C peptide. 
They then showed that injecting this molecule twice a week at a 
dose of 10 mg/kg selectively regulates the phosphate pathway 
by controlling NPT2A expression in vivo through competitive 
inhibition of FGF-23 binding. To the Hypmice preclinical model 
of XLH/FGFR/α-KL co-receptor.With limited safety concerns, 
the FGF-23C Fc molecule is an ideal candidate for use as a new 
therapeutic for XLH patients. Its ability to preferentially modulate 
the FGFR1/α-KL phosphate pathway, but not FGFR3&4/α-KL, in 
the control of 1,25(OH)2D levels in the kidney, makes it a unique 
tool for treating the disease.39, 40

CYP24A1 INHIBITOR
In order to reduce the amount of renal 1,25(OH)2D produced, 
FGF-23 either upregulates the expression of vitamin D 
24-hydroxylase (CYP24A1), a mitochondrial enzyme that 
inactivates vitamin D metabolites through the C-24 oxidation 
pathway, or inhibits the expression of CYP27B1, the enzyme 
that converts 25-(OH)D to its active metabolite.49 In the mice 
models of hyperexpressing mutant FGF23R176Q and Hyp, 
hypophosphatemic rickets with elevated levels of FGF-23 are 
similarly linked to higher renal CYP24A1 expression, indicating 
a critical role for enhanced CYP24A1 activity in the pathogenesis 
of these diseases.In the Hyp and FGF23R176Q-transgenic mice, 
CYP24A1 knockout led to almost full recovery of rachitic bone 
defects; nevertheless, blood phosphorus and 1,25(OH)2D levels 
did not increase in these murine models of human disease.36 
It’s interesting to note that giving the CYP24A1 inhibitor CTA102 
to Hyp and FGF23R176Q-transgenic mice improved their 
rachitic bones.36 It is yet unknown if pharmacologic inhibition 
of CYP24A1 activity can be used as a stand-alone therapeutic 
target.

FGF-23 INTERMEDIATOR
Apart from the FGF-23 C peptide and FGF-23 specific 
antibody, a FGF-23 antagonist (ZINC13407541) was identified 
computationally that binds to FGF-23 and interferes with its 
interaction with the FGFR/α-KL complex in a heterologous41 
Additionally, it was demonstrated that this FGF-23 antagonist 
increased serum phosphate and 1,25(OH)2D in a mouse 
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model of FGF-23-related hypophosphatemic illnesses and 
inhibited FGF-23 signalling in isolated renal tubules ex vivo.41 
Furthermore, this FGF-23 antagonist raised PTH levels in 
the mouse illness model while marginally but considerably 
lowering FGF-23 levels.41 The discovery of a tiny chemical that 
inhibits FGF-23’s activation of FGFRs opens up new avenues 
for researching FGF-23’s functions and paves the way for the 
creation of therapeutic medication candidates to address 
conditions caused by excess FGF-23. In addition, compared to 
FGF-23 antibody, FGF-23 antagonist can be more affordable, 
orally accessible, and readily dose-titrated. This little chemical 
has been used in THREFGF-23TARGET EDTHERAPIES POTENTIAL 
SIDE EFFECTS

Every FGF-23 focused treatment available today has benefits 
and drawbacks. The FGFR inhibitors exhibit a significant 
suppression of FGFR tyrosine kinase activity; they are able to 
obstruct FGF-23 production as well as its end-organ effects, but 
they are non-specific and may be harmful to tissues and organs. 
On the other hand, FGF-23 antibody exhibits a high level of 
treatment specificity while functioning as a FGF-23 blocker. 
FGF-23 antibody, however, requires expensive therapy and 
parenteral administration. Although FGF-23 C-terminal peptides 
similarly exhibit good treatment specificity, its potential as a 
long-term therapeutic strategy may be limited due to increased 
proteolytic instability during treatment.While the 52 CYP24A1 
inhibitor has no effect on 1,25(OH)2D or phosphorus levels, it 
virtually entirely restores the rachitic bone in hypophosphatemic 
disorders. An FGF-23 antagonist may be a useful treatment 
approach as opposed to the FGF-23 antibody since it is efficient, 
orally accessible, and simple to dose titrate. This tiny molecule 
has been used in late clinical trials and preclinical screening to 
develop lead compounds.

The potential side effects of the target dietary supplements 
sEFGF-23
All of the available FGF-23 targeted treatments have benefits 
and drawbacks, as Table 1 illustrates. The FGFR inhibitors 
exhibit a significant suppression of FGFR tyrosine kinase 
activity; they are able to obstruct FGF-23 production as well 
as its end-organ effects, but they are non-specific and may 
be harmful to tissues and organs. On the other hand, FGF-23 
antibody exhibits a high level of treatment specificity while 
functioning as a FGF-23 blocker. FGF-23 antibody, however, 
requires expensive therapy and parenteral administration. 

C-terminal peptides of FGF-23 also exhibit a high specificity 
ofWhile the 52 CYP24A1 inhibitor has no effect on 1,25(OH)2D 
or phosphorus levels, it virtually entirely restores the rachitic 
bone in hypophosphatemic disorders. If the short half-life of 
the chemical is addressed through optimisation, the FGF-23 
antagonist’s oral bioavailability, dose titratability, and cost-
effectiveness make it a potentially useful treatment approach.

CONCLUSION

One hormone that circulates and controls the metabolism of 
phosphate and vitamin D is called fibroblast growth factor-23. 
Hypophosphatemic crickets and decreases in serum phosphate 
and 1,25(OH)2D levels are caused by over-action of FGF-23. 
Consequently, the development of treatment approaches to 
inhibit thathorm one’s behaviours is required. In fact, it has been 
observed that FGF-23 blocking antibodies or FGF-23 signalling 
inhibitors are beneficial for patients with hypophosphatemic 
diseases caused by excess FGF-23. 37, 53, and 54 However, 
because FGF-23 deficiency causes hyperphosphatemic illness, 
these medicines require close monitoring of dosage and use.55, 
56 In fact, the management of FGF-23 levels in CKD patients 
appears to be controversial because mild FGF-23 reductions 
with calcimimetics may enhance survival in ESRD patients47, 
while FGF-23 inhibition with a high affinity blocking antibody 
increased mortality in CKD patients38, raising doubts about the 
efficacy of these novel therapies in CKD. For both inherited and 
acquired hyperphosphatemic disorders, the application of FGF-
23 inhibitors or low affinity FGF-23 antibodies to regulate FGF-
23 excess activities remains a viable treatment option.
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